(Refer Slide Time: 11:52)

Let us look at an example in the interpreter. Just to emphasize one point; supposing I said
s was hello and t was there, then s plus t would be the value hello there. Now notice that
there is no space. So, plus literally puts s followed by t, it does not introduce punctuation,
any separation, any space and this is as you would like it. If you want to put a comma or
a space you must do that, so if you say t instead of that was space there t is the string
consisting of blank space followed by there, now if I say s plus t, I get a space between

hello and there.

This is important to note that plus directly puts things together it does not add any
punctuation or any separation between the two values. So, it is as though you have one
new string which is composed of many old strings whose boundaries disappear

completely.

89

(Refer Slide Time: 12:47)

Operations on strings

* Combine two strings: concatenation, operator +
s = "hello"
et =5+ ", there"
» t isnow "hello, there"

* len(s) returns length of s

* Will see other functions to manipulate strings later

We can get length of the string using the function . So, len(s) returns the length of s.
So, this is the number of characters. So, remember that if the number of characters is n
then the positions are 0 to n minus 1. So, the length of the string §'here would be 5, the
length of the string t here would be 5 plus 7 — 12. There are many other interesting
functions that one can use to manipulate strings, you can search and replace things, you
can find the first occurrence of something and so on, and we will see some of these later
on, - we get into strings and text processing and reading data from files in more

details.

90

(Refer Slide Time: 13:26)

Extracting substrings =

s ey |

A slice is a “segment” of a string

A very common thing that we want to do with strings is to extract the part of a string. We
might want to extract the beginning, the first word and things like that. The most simple
way to do this in python is to take what is called a slice. Slice is a segment, a segment
means [take a long string which I can think of as a list of character and I want the

portion from some starting point to some ending point.

(Refer Slide Time: 13:55)

Extracting substrings |

A slice is a “segment” of a string

0l 23y
s - elip
. 5[1:4_] is “ell"

\
1 (Mfkto Mt 1/\

91

This is what python calls a slice. So, if we say s is hello as before, then for a slice we
give this starting point and the ending point separated by colon. So, we use this square
bracket notation exactly as though we were extracting part of a string, but the part that

we are extracting is not the single position, but a range of positions from 1 to 4.

Now in python, we saw that we had this range function which we wrote last time, it said
things like, if I want the numbers from 1 to m, [must write 1 to m plus 1, because the
range function in python stops one position short of the last element of the range. So, in
the same way, a slice stops one position short of the last index in the slice. So, if I do this
then remember that hello has position 0, 1, 2, 3, 4, so the slice from 1 to 4 starts at 1 goes

to 2, goes to 3, but does not go to 4, so it is only from e to 1 - the second 1.

(Refer Slide Time: 14:59)

Extracting substrings

A slice is a “segment” of a string
s = "hello"
e s[1:4] is “ell"
* s[i:j] startsat s[i] andends at s[j-1]
e s[:j] startsat s[0], so s[0:j]

*s[i:] endsat s[len(s)-1], so s[i:len(s)]

In general, if I write s i colon j then it starts at s i and ends at s j minus 1. There are some
shortcuts which are easy to remember and use; very often you want to take the first n
characters in the string, then you could omit the 0, and just say start implicitly from 0, so
just leave it out, so just start say colon and j. So this will give us all position 0 1 up to j

minus 1. So, if I leave out first position, it is implicitly starting from 0.

Similarly, if I leave out the last position it runs t@ the end of the string. So, if I want

92

everything from 1 onwards then I can say s i colon and this will go up to the position
length of s minus 1, but if I write explicitly as a slice, I will only write length of s. So,
essentially this is theé main reason that python has this convention that whenever I write
something like a range of 1 to m plus 1 then I have this extra plus 1 here. So, the main

reason for this plus 1 here is to avoid having to write minus 1.

If I had to include the last character and if I start numbering at 0, then every time I
wanted to go to the end of the string I would have to say length of s minus 1. It is much
more convenient to just say length of s, and implicitly assume that it knows that it should
not go to length of s, but length of § minus 1. So, this whole confusion if you would like
to call that in python about that fact that all ranges end one short of the right hand side of
the range, stems from the fact that you very often want to run from something to the
length of it in a list or a sequence or a string and when you say that you do not want have

keep remembering to say minus 1.

(Refer Slide Time: 16:45)

Let us play with the second in the python interpreter. So, if I say s is equal to hello then
we saw that if I do 1 to 4, I get 'ell'. If I say colon 3 then I get 'hel' thatis 0 1 2. If say 2
colon, I get 'llo' that is 2 3 4. What if [say 3 2 1, so this says: start at position 3 and go up

to position 1 minus 1 which is 0. So, python does not give you an error, it takes all these

93

invalid ranges, anything where for example, the starting point to the ending point does

not define a valid range, and it says this is the empty string.

On the other hand, if I say something like go from 0 to 7, where there is no 7th position
in the string, here python will not give an error instead, it will just go up to the last
position which actually exists in the string below 7. So, in general these range values are
treated in a sensible way, if you give values which do not make sense. As far as possible

python tries to do something sensible with the slice definition.

(Refer Slide Time: 17:57)

Modifying strings

* Cannot update a string “in place”

*5s = "héiio". want to change to "help!"

Though we have access to individual positions or individual slices or sequences within a
string, we cannot take a part of a string and change it as it stands. So, we cannot update a
string in place. Suppose, we want to take our string “hello” and change it to the string
“help!” it would be nice if we could take the third and the fourth position. So, remember
0,1,2,3,4,5,500, 1, 2, 3, 4, so it would be nice if we could say make this into a p and

make this into an exclamation mark, so that I could get help instead of hello.

94

(Refer Slide Time: 18:36)

Modifying strings

* Cannot update a string “in place”
"hello", wantto changeto "help!"

* s[3] “p" — error!

We would want to write something like change s 3, assign the value s 3 to be the string p.
Now, unfortunately python does not allow this. So, you cannot update a string in place
by changing its part. In fact, if you try this, you will actually get an error message, let us

SEc€.

(Refer Slide Time: 18:54)

95

Here we have the string hello defined in four, and if I now try to say s 3 is equal to p,
then it says this does not support item assignment, which is what we are trying to say you

cannot change parts of a string as it stands.

(Refer Slide Time: 19:12)

Modifying strings

» Cannot update a string “in place”
* s = "hello", wanttochangeto "help!"
* s[3] = "p" — error!

Instead, use slices and concatenation
es = s[0:3] + "p!"

» Strings are immutable values (more later)

Instead of doing this, instead of trying to take a string and change the part of it as its
stands what you need to do is actually construct a new string effectively using the notion
of slices and concatenation. Here what we want to do is we want to take the first part of
the string as it is. These are the first three characters, and then we want to change this to
p exclamation mark. So, what we can say is update s by taking 0, 1, 2 which is slice 0 to
3 and concatenating it with the new string p exclamation mark. So, this is how you
modify strings in python, but important thing is this is a new s we are not claiming that

this s is same as old s.

There we build a new string from the old string and perhaps store it back in the same
name, it is partly like when we say j is equal to j plus 5, we are actually saying that we

have created a new value for j and stored it back in j.

Here again we are creating a new string and putting it back, but we are not modifying it.

Now this distinction between modifying and creating a new value may not seem very

96

important at this moment, but it will become important as we go along. So, strings are
what are called immutable values, you cannot change them without actually creating a
fresh value; whereas, lists as we will see which are more general type of sequence can be
changed in place you can take one part of a list and then replace it by something else. So,
we will see more about this later, this is a fairly important concept. Remember for now

that strings cannot be changed in place.

(Refer Slide Time: 20:42)

Summary

» Text values — type str, sequence of characters

» Single character is string of length 1

Extract individual characters by position
» Slices extract substrings
* + glues strings together

» Cannot update strings directly — immutable

To summarize what we have seen is that text values are important for computation, and
python has the types - string or str, which is a sequence of characters to denote text
values. And there is no distinction for a separate type for a single character; there is no

single character type in python, a single character 1§ just a string of a length 1.

We can extract individual characters by index positions, we can use slices to extract sub
strings, and we can glue strings together using the concatenation operator plus, but
strings are immutable. We cannot take a value assigned to a string name and update it in
place. We can create a new value by manipulating it using slices and concatenation, but

we cannot directly update it, because strings are immutable.

97

